H

GCSE (9-1)

Combined Science B (Twenty First Century Science)

J260/07: Physics (Higher Tier)

General Certificate of Secondary Education

Mark Scheme for November 2020

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.
© OCR 2020

Annotations

Annotation	Meaning
S	Correct response
\boldsymbol{A}	Incorrect response
BOD	Omission mark
CON	Benefit of doubt given
RE	Contradiction
SF	Rounding error
ECF	Error in number of significant figures
L1	Error carried forward
L2	Level 1
L3	Level 2
NBOD	Level 3
SEEN	Benefit of doubt not given
I	Noted but no credit given

Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Annotation	Meaning
\boldsymbol{I}	alternative and acceptable answers for the same marking point
\checkmark	Separates marking points
DO NOT ALLOW	Answers which are not worthy of credit
IGNORE	Answers that can be accepted
ALLOW	Words which are not essential to gain credit
()	Underlined words must be present in answer to score a mark
ECF	Alternative wording
AW	Or reverse argument
ORA	

Subject-specific Marking Instructions

INTRODUCTION

Your first task as an Examiner is to become thoroughly familiar with the material on which the examination depends. This material includes:

- the specification, especially the assessment objectives
- the question paper
- the mark scheme.

You should ensure that you have copies of these materials.
You should ensure also that you are familiar with the administrative procedures related to the marking process. These are set out in the OCR booklet Instructions for Examiners. If you are examining for the first time, please read carefully Appendix 5 Introduction to Script Marking: Notes for New Examiners.

Please ask for help or guidance whenever you need it. Your first point of contact is your Team Leader.

The breakdown of Assessment Objectives for GCSE (9-1) in Combined Science B:

	Assessment Objective
AO1	Demonstrate knowledge and understanding of scientific ideas and scientific techniques and procedures.
AO1.1	Demonstrate knowledge and understanding of scientific ideas.
AO1.2	Demonstrate knowledge and understanding of scientific techniques and procedures.
AO2	Apply knowledge and understanding of scientific ideas and scientific enquiry, techniques and procedures.
AO2.1	Apply knowledge and understanding of scientific ideas.
AO2.2	Apply knowledge and understanding of scientific enquiry, techniques and procedures.
AO3	Analyse information and ideas to interpret and evaluate, make judgements and draw conclusions and develop and improve experimental procedures. AO3.1 Analyse information and ideas to interpret and evaluate. AO3.1a Analyse information and ideas to interpret. AO3.1b Analyse information and ideas to evaluate.
AO3.2	Analyse information and ideas to make judgements and draw conclusions.
AO3.2a	Analyse information and ideas to make judgements.
AO3.2b	Analyse information and ideas to draw conclusions.
AO3.3	Analyse information and ideas to develop and improve experimental procedures.
AO3.3a	Analyse information and ideas to develop experimental procedures.
AO3.3b	Analyse information and ideas to improve experimental procedures.

Question			Answer	Marks	AO element	Guidance
1	(a)	(i)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer $=4.5 \times 10^{5}(\mathrm{~J})$ in standard form award 4 marks $\begin{aligned} & \text { Recall Work done (energy transferred) }=\text { force } \times \text { distance } \\ & \checkmark \\ & =9000 \mathrm{~N} \times 50 \mathrm{~m} \checkmark \\ & =450000(\mathrm{~J}) \checkmark \\ & =4.5 \times 10^{5}(\mathrm{~J}) \checkmark \end{aligned}$	4	$\begin{aligned} & 1.1 \\ & 2.1 \\ & 2.1 \\ & 1.2 \end{aligned}$	ALLOW GPE=weight \times height ALLOW GPE=mass $\times \mathrm{g} \times$ height OR mgh
		(ii)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer = $\mathbf{3 0 0 0 0}(\mathrm{W})$ award 3 marks Recall Power $=$ Energy transferred \div time $\begin{aligned} & =450000 \mathrm{~J} \div 15 \mathrm{~s} \\ & =30000(\mathrm{~W}) \mathrm{r} \end{aligned}$	3	$\begin{aligned} & 1.1 \\ & 2.1 \\ & 2.1 \end{aligned}$	ECF from (a)(i) ALLOW 30 kW
	(b)		Rate Mechanically Kinetic Thermal $\checkmark \checkmark$	2	$\begin{aligned} & 1.1 \\ & 2.1 \end{aligned}$	Four correct = 2 marks Three or Two correct = 1 mark One or none correct $=0$ mark

Question			Answer	Marks	AO element	Guidance
2	(a)	(i)	Both points plotted to within ± 0.5 small square \checkmark	1	2.2	Points are: $(1.4,8)$ and $(1.8,11)$
		(ii)	Suitable straight line of best fit through most of the points \checkmark	1	2.2	ALLOW points as plotted by candidate
		(iii)	Current is (directly) proportional to potential difference/pd/voltage OR the relationship is linear \checkmark	1	3.1a	ALLOW component is linear IGNORE just they both increase / as one increases so does the other
		(iv)	(fixed) resistor \checkmark	1	2.1	ALLOW resistance (wire) or Ohmic conductor
		(v)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer = 160 OR $170(\Omega)$ award 4 marks Read current $=12 \mathrm{~mA}$ from graph \checkmark Convert mA to A: Resistance $=12 \mathrm{~mA}=12 \times 10^{-3} \mathrm{~A} \checkmark$ Rearrange equation and substitute: Resistance $=2.0 \mathrm{~V} \div 12 \times 10^{-3} \mathrm{~A}$ $=160$ or $170(\Omega) \checkmark$	4	$\begin{aligned} & 2.2 \\ & 1.2 \\ & 2.1 \\ & 2.1 \end{aligned}$	ALLOW current $=11.8-12.2 \mathrm{~mA}$ ECF from line drawn on graph ALLOW 3 marks for correct calculation with no conversion $=0.16$ or $0.17(\Omega)$ ALLOW 2 marks for substitution with an incorrect or no conversion and incorrect or no evaluation, e.g. for Resistance $=2.0 \div 12$ ALLOW answers of more than 2 s.f. that round to 160 or 170
	(b)	(i)	Current is not (directly) proportional to potential difference/pd/voltage OR the relationship is non-linear \checkmark	1	3.1a	ALLOW component is non-linear ALLOW description of what the graph shows e.g.: No current when p.d. negative AND then current increases as p.d. increases OR No current when potential difference less than 0.5 V AND then current increases as p.d. increases
		(ii)	To allow current to pass in only one direction \checkmark	1	3.2b	ALLOW convert a.c. to d.c.

Question			Answer	Marks	AO element	Guidance
3	(a)	(i)	Any two from: Ultraviolet/UV, X-rays, gamma/ γ rays, alpha/a (particle), beta β (particle)	2	1.1	
		(ii)	kill/damage living cells or body tissue OR cause living cells to become cancerous	1	1.1	ALLOW cause cancer/mutate cells
	(b)		increases faster temperature increases $\checkmark \checkmark \checkmark$	3	1.1	DO NOT ALLOW in any other order Four correct = 3 marks Three correct = 2 mark Two correct = 1 mark One or none correct $=0$ mark

Question		Answer	Marks	AO element	Guidance
4	(a)	the mass per $1 \mathrm{~m}^{3}$ of the material. \checkmark	1	1.1	Tick in $2^{\text {nd }}$ box
	(b)	$11.5 \pm 0.5\left(\mathrm{~g} / \mathrm{cm}^{3}\right)^{\checkmark}$	1	2.2	
	(c)	Zinc shows increasing trend OR fits pattern Platinum higher than gold so does not fit pattern OR Platinum higher than gold but expected variations away from the line so still fits the pattern broadly Zinc would increase confidence AND but platinum decreases/increases confidence	3	2.2×2 3.2a	ALLOW the points are not on the straight line - so relationship is not proportional ALLOW plotted points and reference to them in answer for 2 marks

Question			Answer	Marks	AO element	Guidance
5	(a)	(i)	Darken room / lower ripple tank / increase amplitude of waves.	1	3.3b	ALLOW any sensible suggestion e.g. switch off lights OR draw blinds OR shield from light other than lamp OR use a brighter lamp
		(ii)	Switch on the motor OR adjust speed to give low frequency waves. OR Place a ruler on the paper OR use paper with grid lines \checkmark OR Take a photo/video of the waves OR use a stroboscope to make the pattern appear stationary \checkmark AND Measure length of a number of waves (on photograph or video frame) and divide length by the number of waves to get the wavelength. AND Repeat and take a mean \checkmark	3	1.2	DO NOT ALLOW description of how to generate waves by hand, as this is not accurate
		(iii)	(Fill with) water at a different temperature \& measure temperature with thermometer repeat experiment at different temperatures	2	3.3a	DO NOT ALLOW put a heater in the ripple tank 'Different temperatures' may be shown by examples
	(b)	(i)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer = 2.2 OR 2.3 (Hz) award 2 marks Calculate frequency $=27 \div 12$ $=2.2$ or $2.3(\mathrm{~Hz}) \vee$	2	$\begin{aligned} & 1.2 \\ & 1.2 \end{aligned}$	ALLOW answers of more than 2 s.f. that round to 2.2 or 2.3
	(b)	(ii)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer $=0.053$ OR $0.055(\mathrm{~m} / \mathrm{s})$ award 3 marks Convert 2.4 cm to $0.024 \mathrm{~m} \quad \checkmark$ substitute: wave speed $=0.024 \times 2.2$ OR $0.024 \times 2.3 \quad \checkmark$ $=0.053$ OR $0.055(\mathrm{~m} / \mathrm{s}) \checkmark$	3	$\begin{aligned} & 1.2 \\ & 2.1 \\ & 2.1 \end{aligned}$	ECF from part b(i) ALLOW 2 marks for substitution with an incorrect answer or no conversion ALLOW answers of more than 2 s.f. that round to $0.053 \text { or } 0.055$

Question			Answer	Marks	AO element	Guidance
6	(a)	(i)	The current at W is LOWER than the current at $\mathrm{Y} \checkmark$ The potential difference measured by voltmeter X is LOWER than the potential difference measured by Z	2	2.1	
		(ii)	The current increases OR ammeter reading is higher \checkmark The p.d./voltage decreases OR voltmeter reading is lower	2	1.1	
	(b)		FIRST CHECK THE ANSWER ON ANSWER LINE If answer $=0.45(\mathrm{~J})$ award 4 marks Convert 300 mC to $0.3 \mathrm{C} \checkmark$ Recall and rearrange: work done $=$ potential difference \times charge Substitute: work done $=1.5 \times 0.3$ Work done $=0.45(\mathrm{~J})$	4	1.2 1.1 2.1 2.1	No conversion or incorrect conversion scores 3 marks. ALLOW 450 mJ ALLOW 3 marks for correct answer with no conversion $=450$ (J)

Question			Answer	Marks	$\begin{gathered} \text { AO } \\ \text { element } \end{gathered}$	Guidance
7	(a)		Power rating increases which causes the change in stored energy to increase AND time increases causes stored energy to increase Recognising that one or both changes is proportional 2 or more examples from the table used to show this	3	3.1a	For example: 'Change in stored energy proportional to power rating' or 'Change in stored energy proportional to time used' ALLOW 2 marks for change in stored energy $=$ power rating \times time ALLOW Examples: shower \& kettle to show power rating: $7500 \div 1500=600 \div 3000$. vacuum cleaner \& television to show time: $125 \div 1.0$ $=50 \div 0.4$ Any two to show power \times time
	(b)	(i)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer = 45 (\mathbf{W} h) award 3 marks $\begin{aligned} & \text { 90/100 = 0.9 } \checkmark \\ & \text { Substitutution: } 0.9=\text { useful energy output } / 50 \checkmark \\ & =45(\mathrm{~W} \mathrm{~h}) \checkmark \end{aligned}$	3	$\begin{aligned} & 1.2 \\ & 2.1 \\ & 2.1 \end{aligned}$	
	(b)	(ii)	Shape of Sankey diagram correct \checkmark Sankey diagram: 5 scale divisions wide going to two arrows; one arrow that is 4.5 scale divisions wide and the other arrow that is 0.5 scale divisions wide \checkmark Wider arrow labelled: kinetic energy OR useful energy (output) \checkmark Other arrow labelled: thermal energy OR energy lost to surroundings OR energy dissipated OR energy wasted \checkmark	4	$\begin{aligned} & 1.2 \\ & 2.2 \\ & 2.2 \\ & 2.2 \end{aligned}$	ECF part b(i) ALLOW one mark maximum of these two label marks if arrows are the same size. ALLOW indication that useful energy also finally transferred to thermal store of surroundings. ALLOW energy wasted IGNORE other energies/arrows e.g. sound
	(c)		$1^{\text {st }}$ gap chemical/nuclear/gpe/kinetic/thermal $2^{\text {nd }}$ gap (electric) current (doing work) OR electrical working $3^{\text {rd }}$ gap thermal (energy store)	3	1.1	DO NOT ALLOW sources such as coal, uranium, hydroelectric, wind, solar

Question			Answer	Marks	AO element	Guidance
8	(a)	(i)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer = 1/8 award 3 marks Number of half-lives $=\frac{2076-1986}{30}=\frac{90}{30}=3$ Fraction $=1 / 2 \times 1 / 2 \times 1 / 2$ OR $(1 / 2)^{3}$ $=1 / 8 \quad \checkmark$	3	2.1	
		(ii)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer = 2166 award 3 marks $\begin{aligned} & 1 / 64=1 / 2 \times 1 / 2 \text { OR }(1 / 2)^{6} \\ & 6 \text { half-lives }=6 \times 30 \text { years }=180 \text { years } \checkmark \\ & \text { Year }=1986+180=2166 \end{aligned}$	3	2.1	
	(b)		Any two from: To inform people of hazards / risks To inform people of benefits / costs / ethical issues, To enable (informed) decision making \checkmark To increase understanding and so speed up further research	2	1.1	ALLOW different examples from one marking point e.g. To inform the public of the risks so they can avoid them and to inform politicians of the risks so they can make laws to protect people.

Question		Answer	Marks	AO element	Guidance
9	(a)	Velocity has direction OR velocity is a vector AND speed has magnitude only OR speed does not have direction Direction is changing (so velocity changes) \checkmark	2	1.1	
	(b)	Idea of how difficult it is to change the velocity/acceleration OR (Inertial Mass) = Force \div acceleration	1	1.1	
	(c)*	Please refer to the marking instructions on page 4 of this mark scheme for guidance on how to mark this question. Level 3 (5-6 marks) Explains motion of space probe as it travels towards the star, and explains why it then crashes into the star, using first law and second law There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3-4 marks) Explains motion of space probe as it travels towards the star, using first and second law OR Explains why the space probe crashes into the star, using first and second law There is a line of reasoning presented with some structure. The information presented is relevant and supported by some evidence. Level 1 (1-2 marks) Explains motion of space probe as it travels towards the star, with use of only first law OR Explains why the space probe crashes into the star, with use of only first law. There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant. 0 marks No response or no response worthy of credit.	6	$\begin{gathered} \hline 2.1 \times 2 \\ 3.1 \mathrm{~b} \times 3 \\ 3.2 \mathrm{a} \times 1 \end{gathered}$	Indicative scientific points may include: AO2.1 Apply knowledge and understanding For example: Probe: - At first no (resultant) force on probe - Later force of gravity from star AO3.1b Evaluate information and ideas For example: Probe: At first: due to Newton's first law - will continue at constant speed - will not change direction As approaches star: due to Newton's second law (+ gravity) - accelerates probe/increases speed - towards centre of star AO3.2a Make judgements - space probe will continue on path towards star - speed/velocity will not change (until it gets close to star) - space probe will crash into star - ALLOW Star is also moving and outcome that probe may/will miss star, or other sensible reason for outcome that probe may/will miss star

Question			Answer	Marks	AO element	Guidance
10	(a)	(i)	Any one from: increasing its thermal store OR So the internal energy of the milk has increased	1	1.1	IGNORE gets hot
		(ii)	They have different specific heat capacities OR Need different energy to raise the temperature of the same mass by the same temperature \checkmark	1	1.1	
	(b)	(i)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer = 1250000 (\mathbf{J}) to 3 s.f. award 3 marks Conversion: $560 \mathrm{~g}=0.56 \mathrm{~kg}$ Select and apply: energy $=$ mass \times specific latent heat $E=2.23 \times 10^{6} \times 0.56(=1248800)$ $E=1250000(\mathrm{~J})$	3	$\begin{aligned} & 1.2 \\ & 2.1 \\ & 1.2 \end{aligned}$	ALLOW this mark for correct answer to 3 or more s.f ALLOW this mark for attempt at calculation with incorrect answer correctly given to 3 s.f. (calculation must be attempted)
		(ii)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer = 2970 OR $2980(\mathrm{~W})$ award 3 marks conversion 7 minutes $=7 \times 60 \mathrm{~s}=420 \mathrm{~s} \checkmark$ Sub \& rearrange: 1248800 or $1250000=P \times 7 \times 60 \quad$ OR $P \times 420$ $P=2970 \text { or } 2980(W)$	3	$\begin{aligned} & 1.2 \\ & 2.1 \\ & 2.1 \end{aligned}$	ALLOW energy value 1248800 J or 1250000 J from (bi) ALLOW ECF from energy value in (bi) ALLOW This mark if incorrect or no conversion ALLOW answers to more than 3 s.f. that round to 2970 or 2980 W

Question		Answer	Marks	$\overline{\mathrm{AO}}$ element	Guidance
11	(a)	Action and reaction are equal AND opposite OR Forces occur in interaction pairs which are the same size AND oppose each other.	1	1.1	DO NOT ALLOW forces acting on the same object e.g. example of weight and normal reaction given or reference to balanced forces on one object.
	(b)	Any three from: The wire experiences a force/moves \checkmark Direction of force/movement is down/into page on wire (and up/out of page on magnet) Magnetic field around wire (field on wire) interacts with field of magnet Further detail: Field (on wire) out of page on side of N pole and into page on side of S pole.	3	1.2	ALLOW points made by annotating diagram
	(c)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer $=2.9 \times 10^{-2}(\mathrm{~T})$ in standard form to 2 sf award 4 marks Select and apply: force $=$ magnetic flux density \times current \times length $0.072=$ magnetic flux density $\times 0.45 \times 5.6$ $\begin{aligned} \text { flux density }= & \left(\frac{0.072}{}\right)=0.02857 . .(T) 0.029(T) \checkmark \\ & 0.45 \times 5.6 \end{aligned}$ Answer in standard form and to $2 \mathrm{sf}: 2.9 \times 10^{-2}(\mathrm{~T})$	4	$\begin{gathered} 2.1 \\ 2.1 \\ 2 \times 1.2 \end{gathered}$	Correct answer but not in standard form to 2sf = 2 marks Any number of significant figures - must round to 0.029 Must be of form a.b $\times 10^{c}$ where $a b$ and are digits and c is a positive or negative number. ALLOW one or both of these marks for an incorrect answer in standard form or/and 2sf

OCR (Oxford Cambridge and RSA Examinations)
The Triangle Building
Shaftesbury Road
Cambridge
CB2 8EA
OCR Customer Contact Centre
Education and Learning
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

